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Quantum groups and conformal field theories

By L. ALVAREZ-GAUME

European Laboratory for Particle Physics, European Organization for Nuclear Research,
CH-1211 Geneva, Switzerland

Rational conformal field theories can be interpreted as defining quasi-triangular-
Hopf algebras. The Hopf algebra is determined by the duality properties of the
conformal theory.

Important advances have been made recently towards the classification of rational conformal
field theories (RCFT). An RCFT is characterized by a chiral algebra o = o X oz such that o,
(o) contains at least the identity operator and the Virasoro algebra, and the Hilbert space H
of the theory splits into a finite number of irreducible representations of o-: H = @ H, X Hy, with
i,1 running over a finite range of values. Examples are provided by the minimal models of
Belavin ef al. (1988) and the discrete unitary series of Virasoro representations (Friedan et al.
1984) whose chiral algebra is the Virasoro algebra ; the two-dimensional Wess—Zumino—Witten
theory (Witten 1984) with o an affine Kac-Moody algebra, etc. A classification of RCFTs is
important in the determination of universality classes of two-dimensional critical systems and
it may also be an important step towards the resolution of the far more difficult problem of
understanding the space of classical solutions to string theories.

Verlinde (1988) studied the fusion algebra of an rcFT, which is a consequence of the operator
algebra of the theory. The structure constants of this algebra are given by the different
couplings between three conformal families. If [¢,] denotes the conformal family of the primary
field ¢,, the fusion algebra is written as

[P x[¢] = % N (9] (1)

and the N,* are non-negative integers. If we define the matrices (N,),* = N,*, the associativity
of the operator algebra of the conformal theory implies that the N;s commute. More abstractly,
the fusion algebra is a commutative associative algebra with as many generators as conformal
families in the theory and with structure constants N,*. For each family [¢,] we can construct
its character: L1 omt
Xi(7) = Tryy g™, g= e (2)
The behaviour of (2) under modular transformations in a modular covariant theory is:
T: x(r+1) = e”"*(’*fﬁc’x,(ﬂ,}

S: x(=1/1) =8 x,(7),

where £, is the conformal dimension of ¢,, and ¢ is the central extension of the Virasoro algebra.
Verlinde (1988) showed by many examples that the matrix § diagonalizes the fusion rules.
More precisely, if we write N, = C,; and use C to lower indices, then

Sim Sim S,
Ny = 3, Hm o Ckm (4)

om

(3)

[ 25]
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and the eigenvalues of N; are A,® = S§*/S*. This striking connection between modular
transformations and the fusion rules was proved’ rlgorously by Moore & Seiberg (1989) using
a set of polynomial equations charactenzmg RCFT. The polynomial equations involve the
matrices $ and 7 and two other matrices C and N expressing the duality properties of the tree-
level conformal blocks. To exhibit the equations satisfied by C and N it is convenient to
introduce chiral vertices (see, for example, Schroer 1987, and references therein; Fréhlich
1987; Tsuchiya & Kanie 1987). They are operators which represent the holomorphic three-
point functions: O} (2): Hes H, (5)
where 7 is an index for a primary field. The conformal blocks can be written in terms of
expectation values of products of chiral vertices. For example:

F 35 (z,w) = G| B} (2) D} (w) D (6)

The matrix C describes the exchange of two chiral vertices. At the level of vertices it is the
matrix representing the braiding (through analytic continuation) of the j,k legs of (6).

Graphically,
- I g
i ] L ~-=¢, [i ! , @)
r;

where the left-hand side is a pictorial representation of the block, %, “*. The matrix N is a
consequence of the associativity of the operator product expansion:

J k

: z [f "] : C (8)
L =Z N, Li? 14 .
p

j k

The hexagon equation for C follows from the defining relations of the braid group, and the
pentagon equation satisfied by N is a consequence of the associativity of the operator product
expansion (see Moore & Seiberg (1989) for details). The proof of the Verlinde conjecture is a
consequence of the pentagon identity after one writes a precise representation of the Verlinde
operators. These are defined as follows. On the torus we choose a homology basis (a, 4). For an
RCFT given a primary field ¢,, we can always find a conjugate field ¢; such that the operator
product ¢, X ¢, contains the identity. The Verlinde operators ¢,(a), ¢;(¢) act on the characters
X:(7). They correspond to inserting the identity factorized into ¢,, ¢;, then taking ¢, around the
a- or b-cycle, and finally recombining the two operators into the identity once again. If the
a-cycle represents the equal-time surface, the action of ¢,(a) on ; is diagonal:

$.(a) x;(1) = Ax(7). (9a)
The action of ¢,(b) is more complicated ;

Bi(a) x;(1) = A" x,(7), (90)
because a and b are exchanged by the modular transformation S, then ¢,(6) = S¢,(a) $~?, and

the matrices (4,),* = 4,* all commute. In fact, § diagonalizes the A4;s. The conjecture by
Verlinde was that 4, and N, coincide.

[26]
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There are two ways that quantum groups (Drinf’eld 1986) enter into conformal field theory.
First, the Verlinde operators are associated to closed paths on the torus. It is possible to
construct analogues to these operators for open paths at tree level (Alvarez-Gaumé et al.
19894a). The advantage is that these operators are compatible with the operation of taking
traces, and they also imply the hexagon and pentagon equations, hence the proof of the
Verlinde conjecture becomes conceptually simpler. Furthermore, these open Verlinde
operators satisfy the defining relations for a quantum group. The second application of
quantum groups has to do with the fact that they provide solutions to the polynomial equations
(Alvarez-Gaumé et al. 1988). Moreover, all the known RcFTs can be obtained by using the
Goddard-Kent-Olive (Gko) construction (Goddard et al. 1986) for appropriate groups G, H,
H < G, and their C, N matrices and modular properties seem to follow from the quantum
deformations of G and H (Alvarez-Gaumé ¢t al. 1989 5). Whether the complete set of solutions
to the polynomial equations are given by quantum groups is not clear at present.

In the first application we begin with the space of chiral vertices ¥ compatible with the fusion
rules N,*. On ¥ we can define two operations: one is sewing, denoted by *, and the other one
is taking characters. We want to find an algebra of automorphisms of ¥ compatible with (i)
sewing, (ii) braiding, (iii) the N operation (8) or s— duality. Denoting collectively by s the three
labels in the chiral vertex (5), the braiding (or exchange) operation can be written as

¢s,(z) @s’(w) = Rs,s,s,s, ¢s,(w) ¢s,(z)‘ (10)
If @ is the automorphism algebra and Xe @, we can write the action on V as
X(®s,) = T C8s, Ps, ' (11)
S3

If we think of R as acting on V' ® V, condition (i) becomes
RC,C,=C,CiR, C,=CQ®1, (C,=1QC, (12)

reminiscent of the definition of a quantum group (Drinf’eld 1986). If all we had was (12), we
could always define a representation of @ by using the adjoint representation (in analogy with
ordinary Lie algebras). The problem is that the constraint imposed by the fusion rules,

O} DLk,
vanishes unless £ = /. Nevertheless, for every primary field we can construct an element of Q.
Choosing for simplicity a self-conjugate primary field (i.e. ¢, x ¢, = 1+...) we obtain

XM@Y = Z R(7) (b) (ma) Gi) Plak- (13)

Graphically, we can represent the chiral vertex as in figure 1, with the representations H, and
H, attached in the open boundaries and the primary field ¢, at the point z. The operator (13)
can be interpreted as in figure 2; we factorize the identity into ¢, and ¢, and then move the
fields to the ¢, £ ends along the path shown. For more complicated surfaces one can do the same
operation for each open path. This is why we can interpret X as the open Verlinde operators.
The conditions (i), (ii) and (iii) imply also the tree-level polynomial equations (see Alvarez-
Gaumé et al. 1989a for details). Finally, the action on the characters is based on the operation
of taking traces. In particular, the characters are, schematically,

Xi = Try g" ﬁ‘d’ . (14)

[ 27]
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Ficurke 1. Graphical representation of the chiral vertex.

Ficurke 2. Interpretation of the operator defined by equation (13).

where we have represented the chiral vertex by ¢ 17 k. The action of X on , is defined by first.
acting on the chiral vertex and then taking the trace. It is easy to see, by using (13) and the
triviality of braiding with the identity, that

X"(Xf) =2 Nakak, (15)

which is indeed the standard Verlinde operator.

The second use of quantum groups is related to the solutions of the polynomial equations.
This can be illustrated with the quantum group SL(2,¢) which is associated to the level &
Wess—Zumino-Witten theory (wzw) (see Alvarez-Gaumé ¢t al. 1988). This algebra satisfies the
defining relations:

[X*, X7 = (¢ —g¥)/(d—q), [H X*]=+2X% (16)

When g is an arbitrary real or complex number the representation theory of this algebra is
analogous to the classical case. In RCFT, ¢ is a root of unity. For instance, in the wzw theory,
¢ = exp (2mi/k+2). Now the representation theory becomes more interesting. The only regular
representations have spinj = 0,3, 1,..., 3£, as in the wzw theory. Furthermore, the composition
of angular momentum generates the wzw fusion rules,

min (jl+jgy K'fl-jg)

Ll x L] = % ], (17)

f“'h'fg'
[ 28]
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and the C and N matrices are given by the g-analogues of the 6 —;j symbols computed in
Kirillov & Reshestikhin (1988),

ij’ Bz J:s] = (_1);+1'—;,—j‘q§(c,l+c,‘—c,—c,.) {Jz J:1 J,} ,
1 Ja Js Ja J g
o[ #=fi i)
1 Ja Js Ja J)e
In this way, one reproduces the results of Schroer (1987), Frohlich (1987) and Tsuchiya &
Kanie (1987), and, by using the g-characters of SL(2,¢), one finds that the modular
transformations are represented by ¢—¢7*.

A plausible reason why the quantum group appears is because the polynomial equations are
concerned with the Hilbert space of the theory modulo the chiral algebra. In the Kac-Moody
case relevant for the wzw theory this means roughly that we forget the moding in the
Kac-Moody generators. Naively, one might expect that after doing this one is left with
the classical algebra. The deformation, however, is a consequence of the central extension of
the Kac-Moody algebra which is crucial in determining its representations.

It is quite plausible that all solutions to the polynomial equations are given by combinations
of quantum groups. Work in this direction is in progress.

I thank the organizers of the meeting for the opportunity to present this material in such a
stimulating environment.
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